Penghilang Dahaga Kendaraan…

kalau berbicara tentang bahan bakar terutama bensin pasti kalian sudah pada tau dong, karena kalian menggunakan nya setiap hari jika kalian memiiki kendaraan, beroda dua maupun empat. disetiap kita mengisi bahan bakar pada kendaraan kita, kita pasti ga pernah memperhatikan apa sih yang ada di bensin itu, kenapa bau nya sangat menyengat? dan kenapa bis kendaraan kita bisa bergerak lagi jika diberikan bensin ? semua pertanyaan kalian tentang bensin akan saya bahas disini.

Bensin merupakan bahan bakar transportasi yang masih memegang
peranan penting sampai saat ini. Bensin mengandung lebih dari 500 jenis
hidrokarbon yang memiliki rantai C5-C10. Kadarnya bervariasi tergantung
komposisi minyak mentah dan kualitas yang diinginkan. Lalu, bagaimana
sebenarnya penggunaan bensin sebagai bahan bakar?
Bensin sebagai bahan bakar kendaraan bermotor
Kim. 13. Hidrokarbon dan Minyak Bumi 44

Oleh karena bensin hanya terbakar dalam fase uap, maka bensin harus
diuapkan dalam karburator sebelum dibakar dalam silinder mesin kendaraan.
Energi yang dihasilkan dari proses pembakaran bensin diubah menjadi gerak
melalui tahapan sebagai berikut.

1)    Pembakaran bensin yang diinginkan adalah yang menghasilkan dorongan
yang mulus terhadap penurunan piston. Hal ini tergantung dari ketepatan
waktu pembakaran agar jumlah energi yang ditransfer ke piston menjadi
maksimum. Ketepatan waktu pembakaran tergantung dari jenis rantai
hidrokarbon yang selanjutnya akan menentukan kualitas bensin.

2)    Alkana rantai lurus dalam bensin seperti n-heptana, n-oktana, dan nnonana
sangat mudah terbakar. Hal ini menyebabkan pembakaran terjadi
terlalu awal sebelum piston mencapai posisi yang tepat. Akibatnya timbul
bunyi ledakan yang dikenal sebagai ketukan (knocking). Pembakaran
terlalu awal juga berarti ada sisa komponen bensin yang belum terbakar
sehingga energi yang ditransfer ke piston tidak maksimum.

3)    Alkana rantai bercabang/alisiklik/aromatik dalam bensin seperti isooktana
tidak terlalu mudah terbakar. Jadi, lebih sedikit ketukan yang dihasilkan,
dan energi yang ditransfer ke piston lebih besar.
Oleh karena itu, bensin dengan kualitas yang baik harus mengandung
lebih banyak alkana rantai bercabang/alisiklik/aromatik dibandingkan alkana
rantai lurus. Kualitas bensin ini dinyatakan oleh bilangan oktan.


kemungkinan yang dapat terjadi pada pembakaran motor bensin yaitu : Pembakaran normal (sempurna), dimana bahan bakar dapat terbakar seluruhnya pada saat dan keadaan yang dikehendaki. Mekanisme pembakaran
normal pada motor bensin dimulai pada saat terjadinya loncatan bunga api pada busi. Selanjutnya api membakar gas yang berada di sekelilingnya dan terus menjalar ke seluruh bagian sampai semua partikel gas terbakar habis. Pada saat gas bakar dikompresikan, tekanan dan suhunya naik, sehingga terjadi reaksi kimia dimana molekul-molekul hidrokarbon terurai dan tergabung dengan oksigen dan udara.
Pembakaran yang tidak sesuai dengan yang dikehendaki sehingga tekanan di dalam silinder tidak bisa dikontrol, sering disebut dengan autoignition. Autoignition adalah proses pembakaran dimana campuran bahan bakar tidak
terbakar karena nyala api yang dihasilkan oleh busi melainkan oleh panas yang lain, misalnya panas akibat kompresi atau panas akibat arang yang membara dan sebagainya.  Pembakaran yang normal pada motor bensin adalah dimulai pada saat terjadinya loncatan api pada busi dan membakar semua hidrogen dan oksigen yang terkandung dalam campuran bahan bakar. Dalam pembakaran normal semua atom karbon dan hidrogen bereaksi sempurna dengan udara yaitu
oksigen. Berikut adalah contoh pembakaran normal CH 4 :

CH 4 + 2 O 2 –> CO 2 + 2 H 2 O
Tetapi dalam pembakaran yang tidak lengkap yaitu pembakaran yang ada
kelebihan atau kekurangan oksigen. Contoh reaksi kelebihan oksigen :

CH 4 + 3 O 2 –> CO 2 + 2 H 2 O + O 2
Jadi di dalam persamaan reaksi di atas jelas ada kelebihan O 2 (Oksigen). Contoh
reaksi kekurangan oksigen :

2 CH 4 + 3,5 O 2 –> CO 2 + CO + 4 H 2 O
jadi di dalam persamaan reaksi di atas masih ada CO yang tidak terbakar dan
keluar bersama-sama dengan gas buang. Hal tersebut disebabkan karena
kekurangan oksigen.

setelah kita mengetahui pembakaran bensin yang ada dikendaraan, kita ingin mengetahui lebih lanjut sifat bensin agar kita lebih tahu bagaimana bensin bereaksi pada kendaraan kita. bensin termasuk dalam senyawa alkana. Hidrokarbon jenuh yang paling sederhana merupakan suatu deret senyawa yang memenuhi rumus umum CnH2n+2 yang dinamakan alkana. Sebagai hidrokarbon jenuh, alkana memiliki jumlah atom H yang maksimum. Alkana juga dinamakan parafin (dari parum affinis), karena sukar bereaksi dengan senyawa-senyawa lainnya. Kadang-kadang alkana juga disebut sebagai hidrokarbon batas, karena batas kejenuhan atom-atom H telah tercapai.

Setiap senyawa yang merupakan anggota alkana dinamakan suku. Suku alkana ditentukan oleh jumlah atom C dalam senyawa tersebut. Suku pertama sampai dengan 10 senyawa alkana dapat anda peroleh dengan mensubstitusikan harga n dan tertulis dalam tabel no. 1 berikut.

Suku pertama sampai dengan 10 senyawa alkana

Suku ke n rumus molekul nama titik didih
(°C/1 atm)
massa 1 mol dalam g
1 1 CH4 metana -161 16
2 2 C2H6 etana -89 30
3 3 C3H8 propana -44 44
4 4 C4H10 butana -0.5 58
5 5 C5H12 pentana 36 72
6 6 C6H14 heksana 68 86
7 7 C7H16 heptana 98 100
8 8 C8H18 oktana 125 114
9 9 C9H20 nonana 151 128
10 10 C10H22 dekana 174 142

Penamaan Senyawa Alkana

Perbedaan rumus struktur alkana dengan jumlah C yang sama akan menyebabkan berbedaan sifat alkana yang bersangkutan. Untuk itu marilah kita gunakan aturan tata nama yang diterbitkan IUPAC (International Union of Pure and Applied Chemistry).

Aturan tata nama alkana

  • Rantai tidak bercabang (lurus)

Jika rantai karbon terdiri dari 4 atom karbon atau lebih, maka nama alkana diberi alawal n- (normal)
CH3-CH2-CH2-CH2-CH3 = n-pentana

  • Rantai bercabang,maka aturannya
  1. Rantai karbon berurutan yang terpanjang dalam suatu molekul ditentukan sebagai rantai induk. Rantai induk yaitu rantai karbon terpanjang dari ujung satu ke ujung yang lain. Rantai induk diberi nama alkana.
  2. Tentukan cabang, yaitu atom C yang yang terikat pada rantai induk. Rantai cabang ini disebut gugus alkil, biasa diberi tanda -R (dari kata radikal), dan mempunyai rumus umum -CnH2n+1 Dengan mengganti n dengan angka-angka diperoleh suku-sukunya seperti terlihat pada tabel berikut
  3. Penomoran. Berilah nomor pada rantai induk dari ujung terdekat cabang.
  4. Kadang-kadang terdapat lebih dari satu cabang. Jika cabang-cabang itu sama, namanya tidak perlu disebut dua kali. Cukup diberi awalan di- , kalau 3 cabang sama awalannya tri- , tetra untuk 4 cabang yang sama dan seterusnya. Ingat setiap cabang diberi satu nomor, tidak peduli cabangnya sama atau beda.
  5. Jika cabang-cabang itu berbeda, maka urutan menyebutnya adalah menurut urutan abjad huruf pertamanya, cabang etil disebut dulu dari cabang metil.

Isomer Senyawa Alkana

Atom C mampu membentuk senyawa hidrokarbon rantai lurus maupun bercabang. Alkana dengan jumlah C yang sama akan mempunyai struktur yang berbeda. Semakin banyak jumlah atom C, semakin banyak struktur molekul yang dapat dibentuk. Dua senyawa atau lebih yang mempunyai rumus molekul sama tetapi mempunyai struktur molekul berbeda dinamakan isomer.
Semua alkana yang memiliki 4 atau lebih atom karbon akan memiliki isomeri bangun. Ini berarti bahwa ada dua atau lebih rumus bangun yang bisa dibuat untuk masing-masing rumus molekul.

1. Titik Didih

Titik didih semakin tinggi jika massa molekul relatifnya makin besar. Hal ini berarti wujudnya akan berubah pada suhu kamar dari gas ke cair kemudian padat. Lihat Tabel berikut ini:

Titik-titik didih yang ditunjukkan pada gambar di atas semuanya adalah titik didih untuk isomer-isomer “rantai lurus” dimana terdapat lebih dari satu atom karbon.
Perhatikan bahwa empat alkana pertama di atas berbentuk gas pada suhu kamar. Wujud padat baru bisa terbentuk mulai dari struktur C17H36.
Alkana dengan atom karbon kurang dari 17 sulit diamati dalam wujud padat karena masing-masing isomer memiliki titik lebur dan titik didih yang berbeda. Jika ada 17 atom karbon dalam alkana, maka sangat banyak isomer yang bisa terbentuk!

Penjelasan Titik Didih
Perbedaan keelektronegatifan antara karbon dan hidrogen tidak terlalu besar, sehingga terdapat polaritas ikatan yang sangat tinggi. Molekul-molekul sendiri memiliki polaritas yang sangat kecil. Bahkan sebuah molekul yang simetris penuh seperti metana tidak polar sama sekali.
Ini berarti bahwa satu-satunya gaya tarik antara satu molekul dengan molekul tetangganya adalah gaya dispersi Van der Waals. Gaya ini sangat kecil untuk sebuah molekul seperti metana, tapi akan meningkat apabila molekul bertambah lebih besar. Itulah sebabnya mengapa titik didih alkana semakin meningkat seiring dengan bertambahnya ukuran molekul.
Semakin bercabang rantai suatu isomer, maka titik didihnya akan cenderung semakin rendah. Gaya dispersi Van der Waals lebih kecil untuk molekul-molekul yang berantai lebih pendek, dan hanya berpengaruh pada jarak yang sangat dekat antara satu molekul dengan molekul tetangganya. Molekul dengan banyak cabang tapi berantai pendek lebih sulit berdekatan satu sama lain dibanding molekul yang sedikit memiliki cabang.

Kelarutan Senyawa Alkana

Semua alkana merupakan senyawa polar sehingga sukar larut dalam air. Alkana dalam bentuk cair merupakan pelarut yang baik untuk berbagai senyawa kovalen yang lain.

Kelarutan dalam air
Apabila sebuah zat molekular larut dalam air, maka terjadi hal-hal berikut:
• gaya tarik antar-molekul dalam zat menjadi hilang. Untuk alkana, gaya tarik tersebut adalah gaya dispersi Van der Waals.
• gaya tarik antar-molekul dalam air menjadi hilang sehingga zat bisa bercampur dengan molekul-molekul air. Dalam air, gaya tarik antar-molekul yang utama adalah ikatan hidrogen.
Diperlukan energi untuk meghilangkan gaya tarik antar-molekul tersebut, meskipun jumlah energi yang diperlukan untuk menghilangkan gaya dispersi Van der Waals pada molekul seperti metana sangat kecil dan bisa diabaikan. Akan tetapi, ini tidak berlaku bagi ikatan hidrogen dalam air, dimana diperlukan banyak energi untuk memutus ikatan hidrogen.
Dengan kata lain, sebuah zat akan larut jika ada cukup energi yang dilepaskan ketika ikatan-ikatan baru terbentuk antara zat dan air untuk mengganti energi yang digunakan dalam memutus gaya tarik awal.
Satu-satunya gaya-tarik yang baru terbentuk antara alkana dan molekul air adalah gaya Van der Waals. Pembentukan gaya tarik ini tidak melepaskan banyak energi untuk mengganti energi yang diperlukan untuk memutus ikatan hidrogen dalam air. Olehnya itu alkana tidak larut.

Kelarutan dalam pelarut-pelarut organik
Pada kebanyakan pelarut organik, gaya tarik utama antara molekul-molekul pelarut adalah gaya Van der Waals – baik gaya dispersi maupun gaya tarik dipol-dipol.
Ini berarti bahwa apabila sebuah alkana larut dalam sebuah pelarut organik, maka gaya tarik Van der Waals terputus dan diganti dengan gaya Van der Waals yang baru. Pemutusan gaya tarik yang lama dan pembentukan gaya tarik yang baru saling menghapuskan satu sama lain dari segi energi – sehingga tidak ada kendala bagi kelarutannya.

Sifat Kimia Alkana
1. Pada umumnya alkana sukar bereaksi dengan senyawa lainnya.
2. Dalam oksigen berlebih, alkana dapat terbakar menghasilkan kalor, karbon dioksida dan uap air.
3. Jika alkana direaksikan dengan unsur-unsur halogen (F2, Cl2, Br2, I2), atom –atom H pada alkana akan digantikan oleh atom-atom halogen.

Sumber dan Kegunaan Alkana

Sumber alkana yang terbanyak adalah miyak bumi dan gas alam. Alkana diperoleh dari minyak bumi dengan cara destilasi bertingkat. Alkana merupakan senyawa hidrokarbon jenuh disebut paraffin yang mempunyai arti daya gabung kecil. Rantai karbon pada alkana dapat lurus, bercabang, dan alisiklik.

Kegunaan alakana dalam kehidupan sehari-hari antara lain

1. Bahan bakar, misalnya elpiji atau liquefied petroleum gas (LPG), kerosin, bensin, dan solar.

2. Pelarut, berbagai jenis hidrokarbon, seperti petroleum eter atau nafta, digunakan sebagai pelarut dalam industry dan pencucian kering (dry cleaning)

3. Pelumas, adalah alkana suhu tingggi (jumlah atom karbon tiap molekulnya cukup besar, misalnya C18H38)

4. Bahan baku untuk senyawa organik lain. Minyak bumi dan gas alam merupakan bahan baku utama untuk sintesis berbagai senyawa organik seperti alcohol, asam cuka, dan lain-lain

5. Bahan baku indutri. Berbagai produk industry seperti plastic, detergen, karet sintesis, minyak rambut, dan obat gosok dibuat dari minyak bumi atau gas alam.

alright guys, kita sudah mengetahui sifat bensin, pembakaran bensin pada kendaraan kita . jadi kesimpulan saya pada pembahasan kali ini adalah pilih lah bensin yang mempunyai oktan tinggi agar pembakaran menjadi sempurna dan hasil nya juga kendaraan kita akan bertahan lebih lama, serta kita tidak akan membuat polusi di lingkungan kalau kita menggunakan bensin dengan oktan tinggi . semoga dengan penjelasan saya diblog ini bisa membuat anda sadar akan penting nya membeli bahan bakar yang baik dan sadar akan polusi lingkungan yang semakin parah

terima kasih🙂

 

 

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s